STRICT FUNDAMENTAL DOMAINS FOR GROUP ACTIONS

ABSTRACT. For a finite group action G ~ X, the canonical quotient map does not have a section in
general. This note shows that if G is an orthogonal subgroup and the section exists, then G is generated
by reflections.

1. INTRODUCTION

Let G be a finite group acting on a space X. A fundamental domain for the G-action on X is a

subset D of X such that the map
D X - X/G

is a bijection. The fundamental domain D is called strict if the above map is a homeomorphism.
Clearly, the existence of a section of the quotient map X — X /G is equivalent to that of a strict
fundamental domain for the G-action on X.

A fundamental domain always exists while a strict one does not in general. This paper provides
a result on the condition of G to have a strict fundamental domain.

Theorem 1.1. Given G < O(R™*!) nontrivial and finite, the following are equivalent:

(a) The G-action on R™"*! has a strict fundamental domian.
(b) The group G is a Coxeter group, that is, generated by reflections.

The implication (b) = (a) is a well-known result; see [Hum92, Theroem 1.12]. So we will only
prove (a) = (b) in Theorem @ by induction on n and the slice theory. Explicitly, we focus on a
neighborhood of a point x € S™ C R™ with the stablizer G, nontrivial, and this leads to the G-
action on a sphere S"~! C T,,S", where the dimension of the sphere goes down.

Since every linear representation of a finite group can be orthogonal, we obtain: A finite linear
group has a strict fundamental domain if and only if the group is generated by reflections.

One motivation is the works of [Hor+24; Son22; Gon24; CGS24; GHL25]. They studied the Coxeter
group action on the corresponding toric variety or its cohomology, for which the implication (b) =
(a) was applied. One consequence after this paper is that there is not a straightforward way to
generalize the above results to other groups.

2. PREPARATION

In this section, we take G < O(R"*1) as a finite subgroup unless specified otherwise. We will
prepare for the main result: for the G-action, it is sufficient to focus on a sphere for a strict funda-
mental domain , and on a neighborhood of the sphere for the group action.

2.1. Focus on S™. The existence of a strict fundamental domain for the G-action on R"*! is equiv-
alent to that on S™, which follows from the results in Lemmas @ and @ below.

Lemma 2.1. Let X be a H-space with H a general finite group, D be a strict fundamental domian for the
H-actionon X. IfY isa H-subsapce of X, then DNY is a strict fundamental domain for for the H-action
onY.
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Proof. It follows from that DNY — Y — Y /H is a bijection, which is clearly true. O

Given topological subspace X C R"*! and interval I C R, we write I - X for the subsapce
{tr e R"™ : t € I, x € X}, and cone(X) for [0, 00) - X.

Lemma 2.2. Suppose that X C R"™! is G-invariant, D C X is a strict fundamental domain for the
G-action on X. Then cone(D) is a strict fundamental domain for the G-action on cone(X).

Proof. Prove along the following steps:
e For0 <t <ty,themap [t1,t2] - D < [t1,t2] - X — ([t1,t2] - X) /G is a bijection.
e For each i € N, the homeomorphism f; : [i,i+ 1] - D — ([i,4 + 1]) - X /G has an inverse g;.
e Ug; is inverse to the map cone(D) — cone(X)/G, also continuous by the gluing lemma.
]

2.2. Local behaviors determine linear group action. Suppose that x € R"*!, and R"*! has a basis
{X1,Xs,...,X,11}. Then there is an isomorphism of vector spaces

U TERn+1 — Rn+1, 20427 — ZaiXi,

which is actually independent of basis.

For z € R""! there are identifications: the tangent space 7,R"! and the original Euclidean
space R"*! via u,, R"™! with the affine space centered at z via the translation by x. Moreover,
the two identifications are GL(R"*!)-equivariant, in the sense that the following diagram, for any
g € GL(R"*1), is commutative.

Tan+1 Ha Rn+1 +x Rn—i—l

.| |
n+1 n+1 n+1
Tg(z)R Kg(z) R +g(x) R

Hence we can obtain:
Lemma 2.3. Ifg € GL(R" "), then g is determined by its behavior on a neighborhood in R"**.

For z € S, define maps
Tp i TpS™ — R y = e (y) + z,
and

n: RN\ 0 — S", yHL.
(v, 9)
We have an inclusion o 7, : T,,S™ — S™ which identifies T,,S™ with an open subset of S™ centered
at z. This identification is O(R"!)-equivariant: g o no 7, = 5o 7, o g. for g € O(R" 1), because
the image of 7),S™ under p, is (z)* and the following diagrams are commutative:

T,S" — 5 T,Rn+1 =y pntl _*2 , pntl R\ 0 —1 gn
Q*J/ !]*J .‘JJ (]J gl gl
n n+1 n+1 n+1 n+1 n
Tg(w)S — Tg(m)R m R T(x)} R s R \0 T> S™.

Hence we obtain:
Lemma 2.4. Ifg € O(R™"!), then g is determined by its behavior on a neighborhood in S™.

Corollary 2.5. If H < G acts on an open set U (small enough) in S™, then the H-action is effective.
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3. PROOF

In this section, we will prove the main result of this paper. Unless specified otherwise, G <
O(R™*1) is a nontrivial finite group, and D C S™ is a strict fundamental doamin for the G-action
on S™. Then D is closed in S™ since S™/G is compact.

For a point « € S, it has a stablizer group G, < G that fixes . We can choose a G,-invariant
open subset U, C S™ containing x, which satisfies that gU, N U, = () forany g € G \ G,. This U,
is called a slice at 2. Moreover, the slice U, is called good if the closure U, = 7 o u,(B) for some
bounded disk B C T,5™. Clearly, G, < G, forany y € U,.

Lemma 3.1. Every point x € S™ has a slice for the G-action, which can be good.

Proof. Since S" is Hausdorff and G is finite, we can choose an open neighborhood V,, for each point
y € G(x) such that those open neighborhoods are disjoint. Then the open set
U, := m ﬂ gVy
yeG(z) g(y)=x
isaslice at z. Moreover, we can choose V,, to lie in a bounded subset of n7,, (T7,,5™), then U, is good
since 17, is G,-equivariant. O

Lemma 3.2. A pointxz € D has slice U, C S™ small enough, the space U, N D is a strict fundamental
domain for the G-action on U,.

Proof. Since D is closed, one can choose U, small enough such that the following commutative
diagram holds:

U,ND U, Uz /Gy

| [ !

<U gUx>ﬂD‘—> U gUe — (UgUm>/G-

geqG geG geqG

Then the top map is a homeomorphism. O

Remark 3.3. One can refer to [Bre72, Section 11.4] for the above results when G is a general group.
Let Int(D) denote the interior of D, and 9D the boundary. Then D = Int(D) U dD.

Lemma 3.4. Letz € D. The stablizer G, = (e) iffx € Int(D).

Proof. When & € Int(D), we can choose the slice U, at z toliein D. If Gy, = G, forany y € Uy,
then G, acts trivially on U, and hence has to be {¢) by Corollary @ If there is a point 2’ € U, with
Gy S Gy, thenthereissome g € G, \ G, such that 2’ # g(z') € U,, which contradicts against the
definition of D. Therefore, G, = (e).

When G, = (e), we have g(x) ¢ D for all g # e. We can choose U, small enough such that
g(U,) N D = for all g # e. By definition of D, we have U, N D = U, and = € Int(D). O

We can get the following results directly from Lemma E&] and its proof.

Corollary 3.5.

(i) There exists a point in S™ with a trivial stablizer.

(ii) The subspace S™ \ Ug.(S™)9 is homeomorphic equivariantly to G x Int(D).
(iii) Forany g € G, themap g : D — gD perserves interior points, as well as boundary points.
(iv) Forany g € G, the intersection gD N D liesin 0D.

(v) The condition “small enough” in Lemma @ is unnecessay.



Now we can prove the main result of this paper.
Theorem 3.6. The group G is generated by reflections.

Proof. We use induction. When n = 0, the group O(R!) = Z/2 is generated by a reflection. Then it
is clear that the action G ~ S° (or equivariantly, G ~ R!) has a strict fundamental domain iff G is
generated by the unique reflection.

For a greater n, we study the stablizer G, at a point z € 9D, which is nontrivial by Lemma EI]
Choose a good slice U, C S™ at x such that U, is the image of a closed bounded disk B in T,S"
under the map 77,. Then the G,-action on 9B has a strict fundamental domain due to Lemmas E]]
and @ The induction hypothesis says that G, acts as reflections on 9B = S"~! and hence on B,
on U, and on S™.

We can choose finite such good slices U, C S™ as above to cover the closed subsapce ggG g(0D).

We claim that the group G is generated by the corresponding stablizers G, ; that is,

G = <GI - Ju.o U 8(gD)> = G.

finite geG
It suffices to show G C G'. Every h € G is uniquely correspondent to a closed subspace hD C S™.
If D and D meet in some good slice U,, then h € G, because an interior point of U, N hD is G-
conjugate to a (unique) interior point of U, N D and G, acts effectively on U,,. It is similar when
hD N D = (), since G is finite and S™ is connected. Therefore, G C G'. O

REFERENCES

[Bre72] Glen E Bredon. Introduction to compact transformation groups. Academic press, 1972 (1 E).

[CGS24]  Colin Crowley, Tao Gong, and Connor Simpson. “Toric varieties modulo reflections”. In:
arXiv preprint arXiv:2410.14653 (2024) (1 ﬁ]).

[GHL25] Tao Gui, Hongsheng Hu, and Minhua Liu. “Weyl group symmetries of the toric vari-
ety associated with Weyl chambers”. In: Bulletin of the London Mathematical Society (July
2025). DOI: 10.1112/blms. 70144 (1 fi).

[Gon24] Tao Gong. Homotopy Types Of Toric Orbifolds From Weyl Polytopes. 2024. arXiv: 2407 . 16070
[math.AT]| (1 [I).

[Hor+24] Tatsuya Horiguchi, Mikiya Masuda, John Shareshian, and Jongbaek Song. “Toric orb-
ifolds associated with partitioned weight polytopes in classical types”. In: Selecta Math-
ematica 30.5 (2024), p. 84 (1 [I).

[Hum92] JamesE Humphreys. Reflection groups and Coxeter groups. 29. Cambridge university press,
1992 (i

[Son22]  Jongbaek Song. “Toric Surfaces with Reflection Symmetries”. In: Proceedings of the Steklov
Institute of Mathematics 318.1 (2022), pp. 161-174 (1 m).


https://doi.org/10.1112/blms.70144
https://arxiv.org/abs/2407.16070
https://arxiv.org/abs/2407.16070

	1. Introduction
	2. Preparation
	2.1. Focus on Sn
	2.2. Local behaviors determine linear group action

	3. proof
	References

