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ABſTRACT. For a finite group action G ↷ X, the canonical quotient map does not have a section in
general. This note shows that ifG is an orthogonal subgroup and the section exists, thenG is generated
by reflections.

1. INTRODUCTıON

Let G be a finite group acting on a space X. A fundamental domain for the G‐action onX is a
subsetD ofX such that the map

D ↪→ X ↠ X/G

is a bijection. The fundamental domain D is called strict if the above map is a homeomorphism.
Clearly, the existence of a section of the quotient map X ↠ X/G is equivalent to that of a strict
fundamental domain for theG‐action onX.

A fundamental domain always exists while a strict one does not in general. This paper provides
a result on the condition ofG to have a strict fundamental domain.

Theorem 1.1. Given G ≤ O(Rn+1) nontrivial and finite, the following are equivalent:
(a) The G-action on Rn+1 has a strict fundamental domian.
(b) The group G is a Coxeter group, that is, generated by reflections.

The implication (b) ⇒ (a) is a well‐known result; see [Hum92, Theroem 1.12]. So we will only
prove (a) ⇒ (b) in Theorem 3.6 by induction on n and the slice theory. Explicitly, we focus on a
neighborhood of a point x ∈ Sn ⊂ Rn with the stablizer Gx nontrivial, and this leads to the Gx‐
action on a sphere Sn−1 ⊂ TxS

n, where the dimension of the sphere goes down.
Since every linear representation of a finite group can be orthogonal, we obtain: A finite linear

group has a strict fundamental domain if and only if the group is generated by reflections.
Onemotivation is theworks of [Hor+24; Son22; Gon24; CGS24; GHL25]. They studied the Coxeter

group action on the corresponding toric variety or its cohomology, for which the implication (b) ⇒
(a) was applied. One consequence after this paper is that there is not a straightforward way to
generalize the above results to other groups.

2. PREPARATıON

In this section, we take G ≤ O(Rn+1) as a finite subgroup unless specified otherwise. We will
prepare for the main result: for theG‐action, it is sufficient to focus on a sphere for a strict funda‐
mental domain , and on a neighborhood of the sphere for the group action.

2.1. Focus on Sn. The existence of a strict fundamental domain for theG‐action on Rn+1 is equiv‐
alent to that on Sn, which follows from the results in Lemmas 2.1 and 2.2 below.

Lemma 2.1. LetX be aH-space withH a general finite group,D be a strict fundamental domian for the
H-action onX. If Y is aH-subsapce ofX, thenD∩Y is a strict fundamental domain for for theH-action
on Y .
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Proof. It follows from thatD ∩ Y ↪→ Y ↠ Y /H is a bijection, which is clearly true. □

Given topological subspace X ⊂ Rn+1 and interval I ⊂ R, we write I · X for the subsapce{
tx ∈ Rn+1 : t ∈ I, x ∈ X

}
, and cone(X) for [0,∞) ·X.

Lemma 2.2. Suppose that X ⊂ Rn+1 is G-invariant, D ⊂ X is a strict fundamental domain for the
G-action on X. Then cone(D) is a strict fundamental domain for the G-action on cone(X).

Proof. Prove along the following steps:
• For 0 ≤ t1 ≤ t2, the map [t1, t2] ·D ↪→ [t1, t2] ·X ↠ ([t1, t2] ·X) /G is a bijection.
• For each i ∈ N, the homeomorphism fi : [i, i+ 1] ·D → ([i, i+ 1]) ·X/G has an inverse gi.
• ∪gi is inverse to the map cone(D) → cone(X)/G, also continuous by the gluing lemma.

□

2.2. Local behaviors determine linear group action. Suppose that x ∈ Rn+1, andRn+1 has a basis
{X1, X2, . . . , Xn+1}. Then there is an isomorphism of vector spaces

µx : TxRn+1 → Rn+1,
∑

ai
∂

∂Xi
7→
∑

aiXi,

which is actually independent of basis.
For x ∈ Rn+1, there are identifications: the tangent space TxRn+1 and the original Euclidean

space Rn+1 via µx, Rn+1 with the affine space centered at x via the translation by x. Moreover,
the two identifications are GL(Rn+1)‐equivariant, in the sense that the following diagram, for any
g ∈ GL(Rn+1), is commutative.

TxRn+1 Rn+1 Rn+1

Tg(x)Rn+1 Rn+1 Rn+1

µx

g∗ g

+x

g

µg(x) +g(x)

Hence we can obtain:

Lemma 2.3. If g ∈ GL(Rn+1), then g is determined by its behavior on a neighborhood in Rn+1.

For x ∈ Sn, define maps

τx : TxS
n → Rn+1, y 7→ µx(y) + x,

and

η : Rn+1 \ 0 → Sn, y 7→ y

〈y, y〉
.

We have an inclusion η ◦ τx : TxS
n → Sn which identifies TxS

n with an open subset of Sn centered
at x. This identification is O(Rn+1)‐equivariant: g ◦ η ◦ τx = η ◦ τg(x) ◦ g∗ for g ∈ O(Rn+1), because
the image of TxS

n under µx is (x)⊥ and the following diagrams are commutative:

TxS
n TxRn+1 Rn+1 Rn+1 Rn+1 \ 0 Sn

Tg(x)S
n Tg(x)Rn+1 Rn+1 Rn+1, Rn+1 \ 0 Sn.

g∗

µx

g∗ g

+x

g g

η

g

µg(x) +g(x) η

Hence we obtain:

Lemma 2.4. If g ∈ O(Rn+1), then g is determined by its behavior on a neighborhood in Sn.

Corollary 2.5. If H < G acts on an open set U (small enough) in Sn, then the H-action is effective.
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3. PROOF

In this section, we will prove the main result of this paper. Unless specified otherwise, G ≤
O(Rn+1) is a nontrivial finite group, and D ⊂ Sn is a strict fundamental doamin for the G‐action
on Sn. ThenD is closed in Sn since Sn/G is compact.

For a point x ∈ Sn, it has a stablizer group Gx ≤ G that fixes x. We can choose a Gx‐invariant
open subset Ux ⊂ Sn containing x, which satisfies that gUx ∩ Ux = ∅ for any g ∈ G \ Gx. This Ux

is called a slice at x. Moreover, the slice Ux is called good if the closure Ux = η ◦ µx(B) for some
bounded disk B ⊂ TxS

n. Clearly,Gy ≤ Gx for any y ∈ Ux.

Lemma 3.1. Every point x ∈ Sn has a slice for the G-action, which can be good.

Proof. Since Sn is Hausdorff andG is finite, we can choose an open neighborhood Vy for each point
y ∈ G(x) such that those open neighborhoods are disjoint. Then the open set

Ux :=
∩

y∈G(x)

∩
g(y)=x

gVy

is a slice at x. Moreover, we can choose Vx to lie in a bounded subset of ητx (TxS
n), then Ux is good

since ητx isGx‐equivariant. □

Lemma 3.2. A point x ∈ D has slice Ux ⊂ Sn small enough, the space Ux ∩ D is a strict fundamental
domain for the Gx-action on Ux.

Proof. Since D is closed, one can choose Ux small enough such that the following commutative
diagram holds:

Ux ∩D Ux Ux/Gx

( ∪
g∈G

gUx

)
∩D

∪
g∈G

gUx

( ∪
g∈G

gUx

)/
G.

∼=

Then the top map is a homeomorphism. □

Remark 3.3. One can refer to [Bre72, Section II.4] for the above results whenG is a general group.

Let Int(D) denote the interior ofD, and ∂D the boundary. ThenD = Int(D) t ∂D.

Lemma 3.4. Let x ∈ D. The stablizer Gx = 〈e〉 iff x ∈ Int(D).

Proof. When x ∈ Int(D), we can choose the slice Ux at x to lie in D. If Gy = Gx for any y ∈ Ux,
thenGx acts trivially on Ux and hence has to be 〈e〉 by Corollary 2.5. If there is a point x′ ∈ Ux with
Gx′ ≨ Gx, then there is some g ∈ Gx \Gx′ such that x′ 6= g(x′) ∈ Ux, which contradicts against the
definition ofD. Therefore,Gx = 〈e〉.

When Gx = 〈e〉, we have g(x) /∈ D for all g 6= e. We can choose Ux small enough such that
g(Ux) ∩D = ∅ for all g 6= e. By definition ofD, we have Ux ∩D = Ux and x ∈ Int(D). □

We can get the following results directly from Lemma 3.4 and its proof.

Corollary 3.5.
(i) There exists a point in Sn with a trivial stablizer.
(ii) The subspace Sn \ ∪g ̸=e(S

n)g is homeomorphic equivariantly to G× Int(D).
(iii) For any g ∈ G, the map g : D → gD perserves interior points, as well as boundary points.
(iv) For any g ∈ G, the intersection gD ∩D lies in ∂D.
(v) The condition “small enough” in Lemma 3.2 is unnecessay.
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Now we can prove the main result of this paper.

Theorem 3.6. The group G is generated by reflections.

Proof. We use induction. When n = 0, the group O(R1) = Z/2 is generated by a reflection. Then it
is clear that the action G ↷ S0 (or equivariantly,G ↷ R1) has a strict fundamental domain iffG is
generated by the unique reflection.

For a greater n, we study the stablizer Gx at a point x ∈ ∂D, which is nontrivial by Lemma 3.4.
Choose a good slice Ux ⊂ Sn at x such that Ux is the image of a closed bounded disk B in TxS

n

under the map ητx. Then theGx‐action on ∂B has a strict fundamental domain due to Lemmas 2.1
and 3.2. The induction hypothesis says that Gx acts as reflections on ∂B ∼= Sn−1, and hence on B,
on Ux and on Sn.

We can choose finite such good slices Ux ⊂ Sn as above to cover the closed subsapce ∪
g∈G

g(∂D).

We claim that the groupG is generated by the corresponding stablizersGx; that is,

G′ :=

⟨
Gx :

∪
finite

Ux ⊃
∪
g∈G

∂(gD)

⟩
= G.

It suffices to show G ⊂ G′. Every h ∈ G is uniquely correspondent to a closed subspace hD ⊂ Sn.
If hD and D meet in some good slice Uy, then h ∈ Gy because an interior point of Uy ∩ hD is Gy‐
conjugate to a (unique) interior point of Uy ∩ D and Gy acts effectively on Uy. It is similar when
hD ∩D = ∅, sinceG is finite and Sn is connected. Therefore,G ⊂ G′. □
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